If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+18x-216=0
a = 3; b = 18; c = -216;
Δ = b2-4ac
Δ = 182-4·3·(-216)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-54}{2*3}=\frac{-72}{6} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+54}{2*3}=\frac{36}{6} =6 $
| c/3−3=1 | | 2.5=1.075^12t | | 2y+12=50 | | v-72/6=3 | | v-73/6=3 | | v−72/6=3 | | 22(4/3)-1/3=x+7 | | 6n^2-12n=-10 | | 15=2g+5 | | 4/3x22-1/3=x+7 | | 11/3x22-1/3=x+7 | | y4−2=1 | | t-12=t+48 | | 1/5n+6=3/4 | | v-19=v+49 | | 18=s/3=14 | | t-47=t-40 | | u-33=u+42 | | c+48=C-50 | | p-24=P+47 | | 7x+1=54 | | 6=z+16 | | 9(x-4)=-45 | | 3.5z+2.5z=-6 | | 14807/x=16 | | 7x+1+54=180 | | 2x+2x=200 | | -2(x-7)=-4(x-8) | | H-15=32t | | 4m−3=17 | | 7n+50=10n | | 24(9)=2x. |